- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Achugbu, Ifeanyi_Chukwudi (1)
-
Bell, Jesse_E (1)
-
Chen, Liang (1)
-
Kintziger, Kristina_W (1)
-
Mahmood, Rezaul (1)
-
Meredith, Gwendwr (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Irrigation plays a crucial role in agricultural production across the U.S. Great Plains. Meanwhile, it is a key driver of local and regional climate due to its influence on energy and water exchange between land surface and atmosphere. Despite the irrigation-induced evaporative cooling on temperature alone, how irrigation affects summer heat stress – a combination of temperature and humidity can become a concern to public health concern – is not well understood. This study examines the potential impacts of irrigation practices on summer temperature and heat extremes in the Great Plains using a set of sensitivity experiments conducted with the Weather Research & Forecasting (WRF) model for 10 growing seasons. Results show that intensive irrigation lowers the atmospheric temperature, but the increased humidity from enhanced evapotranspiration, especially during the extreme hot and dry summers, can possibly elevate the risks of heat stress in the heavily irrigated area and its surroundings. The response of humid heat extremes to irrigation depends on the heat metrics used in the assessment. For variables like wet-bulb temperature, wet-bulb globe temperature, and equivalent temperature, irrigation leads to significantly intensified humid heat extremes by up to 5°C and increased heatwave frequency by 3 events year-1. In contrast, metrics like the heat index and environmental stress index suggest that irrigation mitigates heat intensity by decreasing the temperature metrics by up to 1°C. Given the importance of irrigation in Great Plains agriculture in a changing climate, these uncertainties underscore the urgent need to connect heat metrics with health outcomes to better address heat mitigation in rural communities.more » « less
An official website of the United States government
